Urology Cancer


Urology Cancer

The molecular features of cancers, a comprehensive analysis using multi-omics data have been conducted. Additionally, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity inference approach, iDRW, and demonstrated the effectiveness of the method with respect to dichotomizing two survival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a directed gene-gene graph using pathway information by assigning interactions between genes in multiple layers of networks.

It was evaluated using three genomic profiles of urologic cancer patients. The proposed integrative approach achieved improved outcome prediction performances compared with a single genomic profile alone and other existing pathway activity inference methods. The integrative approach also identified common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view using a multi-layered gene-gene network. Our framework is not specifically designed for urologic cancers and can be generally applicable for various datasets.


Calvin Parker
Editorial Assistant
Journal of Nephrology and Urology